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Abstract 1 INTRODUCTION

This paper reports a numerical study of the

Marangoni-Benard (MB) convection in a planar

fluid layer. The least-squares finite element method

(LSFEM) is employed to solve the three-dimensional

Stokes equations and the energy equation. First,

the governing equations are reduced to be first-order

by introducing variables such as vorticity and heat

fluxes. The resultant first-order system is then cast

into a div-curl-grad formulation, and its elliptic-

ity and permissible boundary conditions are read-

ily proved. This numerical approach provides an

equal-order discretization for velocity, pressure, vor-

ticity, temperature, and heat conduction fluxes, and

therefore can provide high fidelity solutions for the

complex flow physics of the MB convection. Numer-

ical results reported include the critical Marangoni

numbers (M_c) for the onset of the convection in

containers with various aspect ratios, and the plan-

forms of supercritical MB flows. The numerical so-

lutions compared favorably with the experimental

results reported by Koschmieder et al..
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When a temperature gradient is applied orthogo-

nally to a thin planar liquid layer with a free inter-

face, cellular convection occurs from an originally

quiescent state. The onset of the convection is due
to the combined effects of the thermal stratification

instability and the thermo-capillary effect. In par-

ticular, the temperature dependence of the surface
tension on the free surface can destabilize the mo-

tionless fluid state to form regular convective cells.

Usually, the diameters of these cells are in the same

order of magnitude as compared to the depth of the

fluid. This transport phenomenon is referred to as

the Ma_angoni-Benard instability due to the first re-

port of the flow phenomenon by Benard. The name

also distinguishes it from the Rayleigh-Bernard in-

stability which could occur without the free surface

and is induced by the buoyancy. In the past, ex-

tensive experimental studies of the MB convection

using silicon oil as the working fluid have been con-

ducted by Koschmieder et al. [1, 2, 3, 4]. Compre-

hensive reviews of the MB phenomena can be found

in Koschmieder [5], Davis [6], and Legros [7].

The theoretical studies of the MB convection

have been focused on the stability analyses. The lin-

ear stability theory was first established by Pearson

[8] and later on extended by Nield [9]. Since that
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time, other type analytical studies flourished, e.g.,

the energy stability theory [10] and the bifurcation

theory [11, 12]. While these studies have greatly en-

hanced our understanding of the flow physics, direct

simulations of the flow phenomena remain attrac-

tive for further investigation. Full flow equations can

be numerically solved without assumptions and sim-

plifications usually employed in the stability anal-

yses. The complications caused by the buoyancy

for ground based experiments can also be avoided.

More than all, the direct simulation is an indispens-

able tool for studying the regime of the supercritical
MB flows where few studies have been conducted.

Duh [13] reported a two-dimensional numeri-

cal study of the MB flows. A method of stream

function-vorticity was employed to simulate the MB

rolls constrained by the bottom and two vertical pe-

ripheral walls. Numerical results of Mac for the on-

set of convection as a function of the aspect ratio

of the container (At) were reported. Here Ar is de-
fined as the ratio of the width of the container to the

depth. Particularly, he found significant increase of

M_c when Ar is reduced to be less than two. Win-

ters et al. [14] used a finite element method to solve

the two-dimensional flow equations and they inter-

preted the numerical results by using the bifurcation

theory. Similar to Duh's work, they also predicted

the increase of Mac for lower At.

Bestehorn [15] conducted the first three-
dimensional calculation of the MB convection. A

special numerical scheme for simulating the three-

dimensional MB flows was reported. In principle,

Bestehorn proposed to decompose the divergence

free velocity into a toroidal and a poloidal parts. For

fluids with large Prandtl numbers, the toroidal part

of the velocity is null. As a result, the calculations

were greatly simplified. By using a spectral method,

Bestehorn showed the connection between his ampli-

tude equations and the two-dimensional Ginzburg-

Landau equation. He presented numerical results of

the MB planform evolution in containers with very

large aspect ratios.

By solving the primitive variables directly, Thess

et al. [16, 17] reported direct simulations of three-

dimensional MB flows. Their numerical approach

took advantage of the flow physics inherent in an

infinite and periodic MB layer, i.e., the flow motion

is solely determined by the temperature distribution

on the free surface. As a result, the Calculation pro-

cedure was simplified and a very efficient pseudo-

spectral method was developed. The MB flows in

both weakly and strongly supercritical regimes were

reported.

In most practical systems the working fluid is

bounded by vertical walls, and the wall effects can-

not be overlooked. For small containers, this situa-

tion are more pronounced. Rosenblat et al. [18, 19]

reported the first analytical study of the onset and

the planform of MB convection in small contain-
ers. Both linear and non-linear stability analyses

were conducted. A slippery lateral wall condition

was employed to avoid the difficulty of the no-slip

condition. By using a similar analytical method,

Chen et al. [20] revisited this problem using the

no-slip condition on the lateral walls. Both studies

show a sharp increase of Mac as Ar decreases below

2 and no significant increase of M_c for Ar >__2.

Similar conclusion has been reached by Duh us-

ing two-dimensional direct simulations. Recently,

Koschmieder and Prahl [3] reported an experimental

study of the onset and planforms of the MB convec-

tion in small circular and square containers. This

study provided the physical evidence to confirm the

strong increase of the Mac as the Ar decreases to a
small number. In addition, they also reported the

post-onset Marangoni cells of wedge shapes which

are not usually seen when using containers of large

aspect ratios.

The objective of the present paper is to develop a

new numerical approach to directly simulate the full

three-dimensional MB convection. In particular, we

like to include the no-slip boundary condition on the

peripheral walls. To this end, we concentrate our at-
tention to the MB rolls in small square containers.

As such, we want to recapture the unusual planforms

observed by Koschmieder and Prahl [3]. Since the

wall effect must be reckoned, the algorithms used by
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Bestehorn[15] andThesset al. [16, 17] cannot be

employed. To this end, we used the least squares

finite element method (LSFEM) to solve the equa-

tions governing the flow physics of the MB convec-
tion.

The employed LSFEM is an extension of the work

originally developed by Jiang et al. [21, 22]. In

[21], div-curl-grad formulations and their ellipticity

for incompressible Navier Stokes equations were de-

rived. In [22], Jiang et al. showed that the LSFEM

is optimal for the elliptic problems in the sense that

the global error is of the same order of accuracy as

compared to the approximation errors. Later on,

the LSFEM has been extended by Yu et al. [23, 24]

to solve the compressible viscous flows at low Mach

numbers. In this work, we shall apply the same tech-

nique to analyze the ellipticity and the permissible

boundary conditions for the governing equations of
the MB convection.

In Section 2, we present the detailed deriva-

tion of the first-order formulation for the MB flows,

including the non-dimensionalization, the div-curl-

grad system, elliptic ity, and the permissible bound-
ary conditions. In Section 3, the LSFEM and the

Jacobi conjugate gradient (JCG) method for solv-

ing the first order equation set are elaborated. In

the last section, we report the simulated results of

the MB flows inside square containers. The results

are compared with the experimental data reported

by Koschmieder et al. [3].

2 THEORETICAL MODELING

2.1 Governing Equations and Boundary
Conditions

In the present study, we like to recapture the the

MB planforms in square containers reported by

Koschmieder et al. [3]. In Table 1, which is tab-

ulated at the end of the text, the properties of the

silicon oil used in their experiments are listed. Ac-

cording these data, the Prandtl number of the sil-

icon oil Pr = v/_ is about 1000, and the capillary

number C = pr_v/Td is about one thousandth. Note

that d is the depth of the fluid layer and is in the
order of mini meter. Since the flow motion is ther-

mally driven, the Prandtl number is a'measure of

the sluggishness of the fluid velocity; higher Prandtl

number implies slower motion and vice versa. On

the other hand, in the absence of gravity the capil-

lary number C is a measure of the surface deflection.

And smaller C implies higher surface tension, which

corresponds to a non-deflecting free surface. Discus-
sions of the surface deflection effect as a function of

C can be found in Davis' work [6].

According to the above discussion, two important

assumptions are made in the present calculation: (1)

the Prandtl number of the working fluid is large and

therefore the Stokes equations can be used instead

of the full Navier Stokes equations, and (2) the cap-

illary number is small and the free surfaces of the

MB rolls are flat. As a result, the continuity equa-

tion, the Stokes equations, and the energy equation
are considered:

v.v=o, (1)

w, (2)
p

OT (3)
Ot

where V = (u, v, w) T is the velocity vector, p is pres-

sure, p is the density of the fluid, and T is temper-

ature. The transport properties _¢ and v and the

density p are assumed constant in the flow field.

To proceed, the governing equations are reduced

to a first-order system by introducing new variables:

= 7, 0 r= v × v, (4)

qz)T=tcvT, (5)

where f/ is the vorticity with _, rl, and ¢" as the

three components, and Q is the heat conduction flux

vector with q_:, qv, and qz as the components in the
respective directions. This step is necessary for the

application of the LSFEM so that the C ° elements
can be used in the calculations. As a result, we



obtainthe followingfirst-orderflowequations:

v.v=0, (6)

v_2+ v v xn = 0, (7)
P

OT

0-T + (v. v)T = V" Q- (8)

In addition, the vorticity is divergence free and the

alternative rule of partial differentiation for the heat

conduction flux vector Q must be satisfied, i.e.,

v.n=0, (9)
v × q = o. (10)

Theboundary conditions on the bottom and the

side walls of the container is the no-slip condition

for velocities and vorticities,

U=V.:W=O

_.n=O

where n is a unit vector normal to the wall. In addi-

tion, prescribed temperature at the heated bottom,

and the insulated condition on the side walls are ap-

plied,

T = Th, on the bottom;

Q - n = 0, on the vertical walls;

On the free surface, the Marangoni boundary con-

ditions are applied.

Ou

PV_z = -70x' (11)

Ov OT

PV_z = -7_y, (12)

where 7 is the surface tension coefficient. The

Marangoni conditions represent the relationship be-

tween the flow shear stress and the tangential sur-

face tension force across the free surface. Any in-

homogeneity of the surface tension due to tem-

perature variations creates a shear force on the
free surface and therefore results in flow motion.

These Marangoni boundary conditions are the driv-

ing force of the Marangoni-Benard convection. By

using the vorticities and heat conduction fluxes, the

Marangoni conditions can also be expressed as,

= -_q., (13)pv_?

pv_ = 7__q, (14)
Y

Since a flat free surface is assumed, we also set w -- 0

on the free surface.

The heat loss on the free surface is modeled by

the usual heat transfer condition:

paCp OT - h(T - To) (15)
Oz

where h is a heat transfer coefficient, Cp is the con-

stant pressure specific heat, and Tc is the prescribed

cold temperature of the ambient air. The heat trans-

fer mechanism on the free surface could be con-

duction, convection, radiation, and combinations of
these effects.

2.2 Non-dimensionalization

Before the non-dimensionalization, the energy equa-

tion is reformulated in terms of the temperature per-

turbation 0, where

0 = T - Ta_,. (16)

A linear distribution of the average temperature T:_e

in the vertical direction is assumed, i.e.,

Z

T=,(z) = Th - _(Th - To), (17)

where Th and T_ are the prescribed hot and cold

temperatures to set up the MB instability, and d is

the depth of the liquid layer. This procedure for

the energy equation is commonly employed in the

stability analyses of the MB flows. As a result, we

obtain the following energy equation,

00 wAT

0--t+ (V.v)0 d = v'Q, (18)

where w is the vertical component of the velocity,

and AT = Th --Tc. Note that here we have redefined
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theheat conduction flux vector Q as the gradient of

the temperature fluctuation, i.e., Q = t¢_7 0.

The governing equations and the boundary condi-

tions are then nondimensionalized by the appropri-

ate parameters. Here, we choose d and d2/t¢ as the

spatial and temporal scales. Therefore, the velocity

scale is _/d. In addition, the temperature variation

0 is nondimensionalized by AT.

U* ----ud V* -- -_,

p* _eL x*pv_ ' -_ '

Z* ---- _, q_ = teAT'

* _ #" = -_T'qz = ,_AT,

W_s _ _Md

* _ d_,

t_AT '

Note that p* is not dimensionless; p* could be inter-

preted as a dimensionless pressure multiplied by a
dimensional constant• This treatment is a common

practice for the Stokes equation. As a result, the

nondimensionalized flow equations are

v.v =0, (19)
vp + _ x ft = 0, (20)
0/9
o-i-+ (v. v)/9 - w = v- Q, (21)
_.ft = 0, (22)

V x Q = 0, (23)

V × V = it, (24)

v/9 = Q. (25)

Note that, the superscript * has been dropped for
convenience.

The Marangoni boundary conditions are also

nondimensionalized by the spatial and temporal

scales, and we get

rI = -M,_q., (26)

= Moq., (27)

where

Ma - 7ATd
pt/t_

is the Marangoni number.

(28)

Similarly, after the non-dimensionalization the
heat convection condition on the free surface be-

comes,
q_ + Bi/9 = 0 (29)

where Bi = hd/apCp is the Biot number, which
is a dimensionless measure of the heat loss on the

free surface. Usually, the ambient environment is

well controlled in the MB experiments and the heat

transfer on the fluid Surface is not efficient. Fur-

thermore, we note that the energy equation and its

boundary conditions are formulated in terms of the

temperature variation 0 instead of temperature it-

self. Therefore, it is a reasonable assumption to let

Bi = 0, which implies that the heat transfer to the

ambient air through the temperature fluctuation /9

on the free surface is negligible. Instead, all heat

transfer on the free surface is through the gradient

of the average temperature T:._. As a result, the

boundary condition for the energy equation on the

free surface becomes q_ = 0.

2.3 Div-Curl-Grad Formulation

First, we apply the first-order backward differenc-

ing to the temporal derivative term of the energy

equation. In addition, by using the definition of the

heat conduction fluxes, we transform the nonlinear

convective terms of the energy equation into an alge-

braic expression• As a result, a new set of first-order

equations is obtained:

V

V

V

•V = 0, (30)

×v=a, (31)
• it=0, (32)

× _2 -4-_p = 0, (33)

• Q = _--_(/9 - 6 '*-1) + (V. Q) - w, (34)

v x q = o, (35)
vo = Q, (36)

where At is the time step, and the superscript n - 1

denotes the previous time step• Note that all right

haxtd sides are algebraic and they have nothing to

do with the classification of this equation set.
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Apparently,theseequationsarecomposedof div-

curl-grad systems: (30) and (31) are a div-curl sys-

tem for velocities; (32) and (33) are a div-curl system

for vorticity and pressure; and, (34), (35) and (36)

are a div-curl-grad system for the heat fluxes and

temperature fluctuation. As such, we arrive at a

system with fifteen equations and eleven unknowns.

The inconsistency between the number of the un-

knowns and the number of equations has been com-

monly referred to as the so-called "over-determined"

problem. It should be emphasized, however, that

the "overdetermined" problem is a notion borrowed

from linear algebra. For partial differential equa-

tions, this interpretation leads to misconception. In

the next section, we shall show that the system with

suitable boundary conditions is elliptic and well-

posed.

2.4 Ellipticity

Since there are eleven unknowns, the equation set

cannot be classified by the ordinary method, which

usually requires an even number of unknowns to

form complex conjugate eigenvalues for elliptic sys-

tems. To overcome the difficulty, dummy vari-
ables axe introduced to reconstruct a even-number-

unknowns system.

The first-order equation set, (30-36), is actually

composed of two div-curl systems and a div-curl-

grad system. In the first system, (30) and (31), the

div and curl operators operate on three unknowns,

u, v, and, w, and the system is composed of four

equations. Here, we introduce a new variable ¢, and

the system becomes

v.v = 0, (37)
V¢ + V x V = ft, (38)

where the dummy variable ¢ satisfies the boundary

condition ¢ = 0 on r. By applying the divergence

operator to (38) and considering _7" _7 × V = 0 and

V" ft = 0 we have

_72¢ = 0 in fl, (39)

¢ = 0 on r. (40)

Therefore ¢ = 0, and the original system has not

been changed.

The second ally-curl set, (32) and (33), is con-

structed by four equations and four unknowns i.e.,

_, r/, _, and p, operated by the div and curl opera-

tors, and no dummy variable is needed.

The third div-curl-grad set, (34-36), has four un-

knowns (0, q_, qu, and qz) determined by seven equa-

tions. Hence, four dummy variables and one equa-

tion are introduced into this system:

V" Q = f, (41)

+ v × Q = o, (42)
V" _ = 0, (43)

V× _+v 0--Q, (44)

where _ and • = (¢t, ¢2,¢3) are the dummy vari-

ables, and f is the right hand side of the energy equa-

tion (see Eq.(34)). As such, this subsystem has eight

unknowns and eight equations. By applying a diver-

gence operator to (42) and considering _7"_7 × Q = 0,

we have _20 = 0 inside the computational domain.

Combined with the prescribed boundary condition

= 0 at F, we get 0 - 0, and the introduction

of 0 does not change the original equations. Sim-

ilarly, by applying a curl to (44), and considering

V × V 0 = V x Q = 0, we have

v x(v x ,z.,)= o. (45)

We also know that

v-(v x v) = o. (46)

With the boundary condition n x • = 0, it can be

shown that • - 0. Therefore, the introduction of

does not change the original system of equations.

Facilitated by the dummy variables, we now

have sixteen equations and sixteen unknowns. In

the Cartesian coordinates, the first-order system of

equations have the following form:

Ou Ov Ow
(47)



0¢ Ow Ov

O---x+ Oy Oz - _'

Ou Ow+ = ,7,
Oy Oz Oz

0¢ Ov Ou

0---;+ Oz Oy = _'

on o¢
=o,

Op
+_z =0,

Op

+_y =0,

0p
+_z =0,

Oq.__k= f,
+ Oz

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

We then cast the equation set into a matrix form:

0q 0q 0q

At_xx + A2_yy + A3_zz = S, (63)

in which the unknown vector q is defined as

q = (u,v,w,¢,_,rl,_,p, qx, q_,qz, O,¢l,¢2,¢3,T) T,

(64)

and S represents the algebraic terms in the right

hand side of the equations. The coefficient matrices

A1, A2, and A3 are tabulated at the end of the text.

The characteristic polynomial of the system is

det(A,A1 + A2A2 + A3,X3)

C 0 0 0)

= det 0 C 0 0
0 0 C 0

0 0 0 C

= (det C) 4

A, A2 A3 0 ]4

0 -A3 As At
= det A3 0 --A1 _2

-A2 A1 0 A3

= (_1_ + AI + A])s

#0.

The equation set is indeed elliptic.

(68)

2.5 Permissible Boundary Conditions

Because the number of equations is even and the

equation set is elliptic, the required boundary con-

ditions are standard. In addition, the equation set

is first-order, therefore only Dirichlet boundary con-

ditions are permissible. Facilitated by the dummy

variables, we have sixteen unknowns governed by

sixteen equations. As such, eight boundary condi-

tions are required on each boundary. For the pur-

pose of discussion, we divide the system of equations

into two groups: the flow equations, and the heat

equations. On each boundary, four boundary con-

ditions are required for each group of the governing

equations. In Table 2, which is tabulated at the end

of the text, we propose the permissible boundary
conditions for the MB convection.

The outward normal vector of the boundary is

denoted by n, and the tangential unit vector is

v = (rt, r2), where rl and r2 are the two orthog-

onal components. And Q_I and Q_2 denote the two

orthogonal components of Q on the free surface.

For a typical MB flow, there are three type

boundary conditions: (1) the heated bottom wall

condition, (2) the insulated vertical wall condition,

and (3) the free surface condition. For each type

7



boundary,we enforcethe knownboundarycondi-
tions as listed in Section 2.1. In addition, we in-

voke the pseudo-boundary conditions of the dummy

variables to make the proposed system well posed.

Since the dummy variables are predetermined, the

adoption of these pseudo-boundary conditions poses

no theoretical difficulty. These null boundary con-

ditions axe put in parentheses. For the Maxangoni

boundary conditions on the free surface, we specify

the vorticities by using the heat conduction fluxes

tangential to the free surface from the previous time

step. This treatment is in accordance with the flow

physics that the flow motion is driven by the uneven

distribution of the surface temperature. Therefore,

we have proved that for each time step, the flow

physics described by the semi-discretized governing

equations is pure elliptic and its solution is deter-

mined by the abovementioned permissible boundary
conditions.

3 THE LEAST-SQUARES FI-
NITE ELEMENT METHOD

The LSFEM is used to solve the first order system of

equations. Due to the flexibility of the LSFEM, the

number of equations and the number of unknowns

need not to be identical. Therefore, the dummy vari-
ables are not included in the numerical solution. The

first-order system of fifteen equations and eleven un-

knowns axe solved by the LSFEM. A vector form of

these equations axe considered,

0q Oq 0q

AI_ + A2_--_y + A3_z z + S = 0, (69)

where each entry of the right-hand-side vector S is

an algebraic equation of eleven dependent variables

to be solved, i.e.,

si = si(qt,q2,'",qtt) i = 1,2,...,15 (70)

where qj,j = 1,-.-,11 are the dependent vari-

ables. The nonlinear terms are linearized by New-

ton's method in the following fashion:

tt (Os,_m
s'_+i=s'_+__,kOqj ] Aqj, (71)

j=l

where the superscript m denotes the previous New-

ton's method step and m + 1 is the current step.

Aqj = q}n+t _ q_, is the increment of the flow vari-
ables in each Newton's iteration. After manipula-

tion, we obtain a new set of equations in vector form

ready for finite-element discretization,

0Aq Am 0q 'n Am 0Aq
A_Aq+A_n-"_--'z + ,"-_--z + 2--'_-y +

Am 0q "n 0Aq Am 0q '_ S_
2 ---_y -l- A_n"-_z + ,"_3 -'_-z -1- = 0(72)

To proceed, the governing equations are cast into

the following operator form:

LAq = f, (73)

where the linear operator L is defined as

mo ,no Am0
L=Ay+A,

The right-hand-side vector is

0q m 0q m

f =-AT Oz Oy

(74)

We then define the least-squares functional of the

residual R = LAq - f for admissible Aq as

That is,

J(Aq) = 9f_ FtT.RdQ. (76)

Minimizing the least-squares functional J(Aq) with

respect to Aq leads to

_J(Aq) = 0. (77)

_ (L_Aq)T • (LAq - f) df_ = 0, (78)

where _ denotes the variation of the function. Let

6Aq = v, and (78) can be written as

fo(Lv)T(LAq)df = (Lv)Tfdf . (79)

To employ the finite element method, the compu-

tational domain is decomposed into N_ elements

Oqm Sm. (75)-- - Oz



and the element shape functions ¢i's are intro-
duced. The discretized solution in each element

AqT_(t , x, y, z) can be expressed as

Nn

= (80)
i=l

where Nn is the number of nodes per dement and

the (AQi(t)) e are the nodal values of Aq. The test
function v is chosen as

v(z,y,z) = ¢i(z,y,z)I, (81)

where I is the identity matrix. Substituting (80) and

(81) into (79) gives the linear algebraic equation

KmAQ = F m, (82)

where AQ denotes the global nodal values of

Aq(z, y), and the final global matrix is

N,

Kin= _(Km) e (83)
e=l

That is, the global matrix K m is assembled from the

element matrix (Kin) _, which is defined as

(K_)e =/fz(L_i)T.(L_2j)dft. (84)

The final right-hand-side vector F m is assembled

from the element vector (F_) _, which is given as

iF_n) e =/_(L&i) T. fdf_ (85)

An important feature of the least-squares finite de-

ment method can be observed in (79) and (84), i.e.,

the matrix is symmetric. In addition, as long as the

solution exists, the global matrix is also positive-
definite.

The JCG method [25] is employed to invert the
coefficient matrix. The method is an efficient and

straight-forward approach for inverting a symmet-

ric, positive-definite matrix. As long as the solu-

tion exists, the numerical convergence of the JCG

method is guaranteed. Because the Jacobi precon-

ditioning procedure consists of modifying only the

diagonal terms of the global matrix, the precondi-

tioned global matrix does not suffer from any fill-in

and the whole procedure can be implemented in an

element-by-element fashion such that no global ma-

trix need to be stored and fine-grain parallelization

is straightforward. We consider this merit of the LS-

FEM spedally attractive for large scale calculations.

4 RESULTS AND

DISCUSSION

The numerical results reported here are the simu-

lated MB flows in square containers. The flow fea-

tures of the MB convection depend on the aspect

ratio of the containers (At) and the Marangoni num-

ber (M=). Ar is defined as the ratio of the horizontal

distance between the opposite walls to the depth of

the liquid layer. As shown in Fig. 1, the configura-

tion consists of four insulated vertical wails, a heated

bottom surface, and a flat free surface. Figure 1 also

illustrates the specified boundary conditions. For

the present study, we want to recapture the unusual

MB planforms reported by Koschmieder et al. [3].

Therefore, our attention has been concentrated on

MB flows in small containers, i.e., Ar _< 9, where no

previous numerical study has been reported. Four

cases are reported: the two, three, four, and five-cell

MB convection. In all four cases, the same mesh

(51 x 51 x 19) is used. The mesh is uniform in the

x and y directions, and is clustered near the free

surface in the z direction. Although not shown, we

have conducted the mesh refinement study for the

four-cell case by doubling the mesh size in each coor-

dinate direction. Essentially, we have obtained the
same numerical solution.

There are three loops of iterations: (1) the outer

loop is the time marching part; (2) the intermedi-

ate loop updates the coefficient matrices and source

terms by Newton's method; and (3) the inner loop

solves the variable increment Aq by inverting the

global matrix using the JCG method. Typically, it

takes about 50 to 100 time marching steps to con-

verge about four order of q_ - q_-l, where n de-

9



notesthe time step. Furtherconvergenceis gener-
ally much slower. Nevertheless, after about 50 to

100 time steps, the numerical method usually have

already caught the MB patterns. Within each time

step, we perform Newton's method about three to

five times to update our coefficient matrix and the

source vector. For each Newton's step, it typically

takes about 300 JCG steps to invert the coefficient
matrix.

To start the calculation, we initialize the temper-

ature field by the initial condition proposed by Thess

et al.[16]:

y,z, 0)= y)z(2- (86)

The field e(x, y) is the superposition of all Fourier

modes supported by the employed numerical mesh.

The magnitude of e(z, y) is set to be one thousandth.

All other flow properties are initialized by zeros. As

time evolves, the numerical procedure will pick up

the most unstable mode and suppress others. In ad-

dition, we usually start our calculations with very

low M_ and gradually increase the Ma until the on-

set of the flow convection. Finally, the calculation

will converge to the selected planform.

Figure 2 shows the numerical solution of a two-

cell MB convection. Four plots are shown: (2a) the

MB planform; (2b) the velocity vectors on the free

surface; (2c) the temperature contours on the free

surface; and, (2d) the contours of the vertical vor-

ticity on the free surface. The planform shown here

is actually the smoothed contour plot of the veloc-

ity profile just beneath the free surface. The surface

topology represents the velocity distribution: the

bulge-up portion represents the rising flow motion

and the valley is the downward flow. For M_ = 87

and At = 5.68, Two triangular MB ceils are ob-
tained. The selected pattern is identical to that re-

ported by Koschmieder et al. [3].

At the centers of the triangles, temperature is
hotter and therefore the surface tension is lower as

compared to the area along the walls and the diag-

onal line, where the temperature is colder. Accord-

ingly, this unbalanced surface tension force results

in flow motions from the hot region to the cold re-

gion; i.e., from the center of the MB cell to the cell

boundary. To replenish the hot region, hot fluid is

dragged up from the bottom of the container, and
therefore the MB convection is sustained. As shown

in Fig. (2c) The coldest spots on the free surface

is the higher-left and lower-right corners, where the

cold fluid is pushed downward to be heated up. It

is interesting to note that without the effect of the

vertical walls, the vertical component of the vortic-

ity (() is null everywhere. This situation has been

pointed out by Thess et al. [16]. Figure (2d) shows •

the distribution of _ on the free surface, and indeed

all the variations are in the vicinity of the vertical
walls. This is another indication that our calculation

has been fairly accurate.

Figures 3-5 show similar results for three, four,

and five-cell MB convection for the corresponding

Ma and At. The patterns are combinations of

triangles, squares, and wedge-shapes. All these

patterns have been observed in the laboratory by

Koschmieder and Prahl [3]. Due to the existence of

the vertical walls, these patterns are quite different

from the general conception of the hexagonal MB

convection usually observed in the containers with

very large At. To show the three-dimensional fea-

tures of the flow fields, we plot vertical sections of

the temperature profiles and velocity vectors for the

4-ceU case. Figure 6 shows three temperature pro-
files in the vertical sections: one crosses the center

of the container, one crosses the center of a MB cell,
and the last one is close to the wall. For the 4-cell

case, the coldest spot on the free surface is at the

center of the container. Figure 7 shows the velocity
vectors of a vertical section crosses the center of two

MB cells. It is obvious that there are two upwardly

rising stream at the centers of the two cells. The

colder fluid flows downward along the walls and the
centerline to from several recirculation bubbles. The

critical Marangoni numbers Mac for all these cases,

fie, 5.68 < At < 8.4, lies between 80 to 85, which

is consistent with the data reported by Koschmieder

and Prahl [3].
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5 CONCLUDING REMARKS

In this paper, we reported the simulations the three-

dimensional Marangoni-Benard convection based on

the LSFEM. The continuity equation, the Stokes

equations, and the time-marching energy equation

are solved simultaneously. Dependent variables such

as vorticity and heat conduction fluxes are intro-

duced to reduce the flow equations to be first-order.

These first-order equations are composed of sev-

eral div-curl-grad systems. As such, by using sev-

eral dummy variables, we show that the)" axe ellip-

tic. Consequently, the required boundary conditions

for a well-posed MB flow problem become verita-

ble. The equation set is solved by the LSFEM, in

which the coefficient matrix is always symmetric and

positive-definite. The inversion of the coefficient ma-

trix is carried out by the JCG method, in which the

computation is element-by-element and no assem-

bly of the global matrix is needed. The MB con-

vections in small square containers with two, three

four, and five-cell MB convections are simulated.

The obtained patterns are identical to that reported

by Koschmieder and Prahl. The critical Maxangoni
numbers for all these cases axe also consistent with

their data.
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Table 1. Properties of the silicon oil at 25°C

Symbol Property

v Viscosity

p Density

Thermal diffusivity

7 Surface tension coefficient dyne/cm

Unit Value

cm2/s 1.

g/cm 3 0.968

cm2/s 0.001095

13.96

Table 2 Boundary conditions.

Conditions Flow Eqns. Heat Eqns.

Heated u=v=w=0 0=0, Qrl =Q_2=0

Bottom n. f_ = 0 (t9 =t0)

Q-n=0, (n×_=0)Insulated

walls

Free

Surface

M t'_n- 1n.V = O, QI"I = a'_-r2

f_r2 = -M_Q_I -t (¢ = 0)

Q.n=0, (n×_=0)
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k 1 =

(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

oo o ooo o lOO o ooo o o
oo o ooo-looo o ooo o o
oo o OOl o ooo o ooo o o
oo o ooo o OlO o ooo o o
oo o ooo o ooo o loo o o
oo o ooo o ooo-1 ooo o o
oo o ooo o ool o ooo o o
oo o ooo o ooo o o_o o o
oo o ooo o ooo o ooo o 1
oo o ooo o ooo o ooo-_o
oo o ooo o ooo o oo_ o o

(65)

k 2 =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

(66)
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h 3 =

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

o o ooo o ooo o 1 oo o oo
o o ooo o ooo-looo o oo
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

o o ooo o ooo o OlO o oo
o o ooo o ooo o ooo o 1o
o o ooo o ooo o ooo-_ oo
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

o o ooo o ooo o ooo o Ol
(67)

_-qz=O

tree Surface _:=Moq_ -!

'O=-Maa'_-i __Insulated Walls

u=v=w= _ (or _)=o

Z qx(Or q¢=o

Healed Bottom u--v=w=_:=o

0 =%=%=o

Fig. 1 A schematic of the computational domain.
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Fig. 2 The Marangoni-Benard convection in a square container with two cells for M_= 87 and

A,= 5.68. (a) the pattern; (b) the velocity vectors on the free surface; (c) the temperature

contours on the free surface; and (d) the vertical vorticity contours on the free surface.
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Fig. 3 The Marangoni-Benard convection in a square container with three cells for M_= 95 and

A,= 6.18. (a) the pattern; (b) the velocity vectors on the free surface; (c) the temperature

contours on the free surface; and (d) the vertical vorticity contours on the free surface.
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Fig. 4 The Marangoni-Benard convection in a square container with four cells for M_= 95 and

At= 6.36. (a) the pattern; (b) the velocity vectors on the free surface; (c) the temperature

contours on the free surface; and (d) the vertical vorticity contours on the free surface.
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Fig. 5 The Maxangoni-Benard convection in a square container with five cells for M_= 85 and

A.= 8.48. (a) the pattern; (b) the velocity vectors on the free surface; (c) the temperature

contours on the free surface; and (d) the vertical vorticity contours on the free surface.
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Fig. 6 The temperature contours on three vertical cross sections for the 4-cell case.

Fig. 7 The velocity vectors on a vertical cross section across the centers of two MB rolls for the

4-cell case.


